
CHAOTIC HOMOGENEOUS POROUS MEDIA.
2. THEORY OF DISPERSION TURBULENCE:
BASIC PROPOSITIONS

A. P. Mozhaev UDC 536.24:544.77

The basic propositions of the theory of dispersion turbulence — the principles of quasi-one-dimensionality, in-
dependence, and isotropy, random velocity fields, and local laws and coefficients of transfer — are presented.

Macrodispersion processes in inhomogeneous porous media govern the steady physical state of the system
solid body–liquid (the liquid can be replaced by a gas).

In the past fifty years, a vast number of publications devoted to the dispersion and inhomogeneity of porous
structures have appeared, but only some of them have been distinguished by new ideas and approaches. The origin of
dispersion theory is associated with the name of Taylor and with the investigations of the Cambridge school (G. I.
Taylor, R. Aris, and P. G. Saffman) [1–5]. The diffusion coefficient for Poiseuille flow in a capillary tube was calcu-
lated and the first model of dispersion in a porous medium based on the scheme of independent random walks of liq-
uid moles, i.e., the analog of Brownian motion, was constructed. A. E. Scheidegger presented in [6] not only a review
of the most important works on the physics of filtration over a hundred years, which makes the book comparable to
the fundamental work [7] in this respect, but also put forward the idea that hydrodynamics and Darcy’s law are largely
determined by dispersion effects. V. N. Nikolaevskii, extending the theory, proposed the general form of the dispersion
tensor [8, 9] which is considered to be conventional at present: the dispersion coefficients are in proportion to the first
power of the flow velocity. By the 1990s, dispersion theory had gradually acquired two pronounced trends, which do
not always complement each other. One trend corresponds to consideration of dispersion at the microlevel: the statis-
tics of different configurations of pores and of their size and orientation in space is considered. From the prescribed
probability characteristics of the geometric models of a porous medium one determines the coefficients of transfer and
dispersion. Examples of this trend in investigations are [10–12].

Another extension of the theory is associated with consideration of a porous medium at the macrolevel, where
the set of values of physical parameters is presented as one realization of a random process. This trend has occurred
owing to the classical results of the works of A. N. Kolmogorov, the outstanding mathematician of the XXth century,
and his disciples on the theory of random processes and turbulence [13, 14]. The theory of steady-state random proc-
esses was used by M. I. Shvidler [15–17] and Yu. A. Buevich [18–21] as applied to the filtration problems in porous
media. By introducing the random fields of permeability, pressure, velocity, and temperature and postulating that
Darcy’s law and the laws of heat exchange and mass exchange hold true for such fields, one can obtain a system of
stochastic equations which is easy to solve. But, first, Darcy’s law and others have been established experimentally for
the average values. Second, the stochastic models used are described on the basis of the available empirical data only
approximately; for example, one has to accept the hypotheses of the correlation scale, the form of the correlation func-
tion, and the character of the functional dependence of the permeability on the porosity. Thus, consideration at the
macrolevel requires no less experimental information for its practical implementation than the first trend. Despite this
fact, an analysis of filtration envisaged as a random process is distinguished by mathematical elegance [17]; some in-
disputable results of this model will be used in the theory of dispersion turbulence.

Two more problems associated with the description of transfer processes, which none of the thorough reviews
[16, 22, 23] eliminates, exist. These are the problems of averaging and computation of the effective coefficients of
conductivity of porous systems.

No general theory of averaging of embedded continua with solution of ergodic problems has been created, but
a number of interesting results which predict its thorough development in the future have been obtained [24–31]. In
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the theory of dispersion turbulence, we will use the most simple and clear methods of averaging, the main criterion of
correctness of which is the agreement between the results of solution of the averaged equations and the experimental
data. Such a method has successfully been employed in [32].

The theory of determination of the effective coefficient of conductivity of heterogeneous media has a century-
old history of development and is essentially an independent scientific trend. In what follows we will assume that the
coefficient of transfer of a stationary heat-transfer agent and of a moving one in a porous media are independent and
additive; the stationary component is computed from the ready formulas obtained in the theory of effective conductiv-
ity with allowance for specific features of the problem. In this connection, we briefly touch upon the development of
the methods to determine the effective conductivity of porous media, singling out just certain fundamental works. The
problem of computation of the effective parameters of inhomogeneous systems was posed for the first time in the
works of Poisson, who studied the magnetic properties of inhomogeneous media with inclusions. In more recent times,
Mossotti and then Clasius used the Poisson method to study inhomogeneous dielectrics. Solution of problems of such
type in optics is associated with the names of Lorenz and Lorentz, who studied the refractive indices of media as
functions of the polarizability and concentration of particles. In the works of Maxwell and Rayleigh, consideration has
been given to the problem of conductivity of matrix-type systems with inclusions of another conductivity which are
arranged regularly or chaotically, and formulas correct in the approximation of low concentration of the inclusions
have been obtained for the effective conductivity of such systems. The approach developed by Maxwell and Rayleigh
gave rise to numerous publications in which different partial problems have been considered and asymptotic formulas
for the effective conductivity have been obtained. One can study some of them in the fundamental handbook of A. V.
Luikov [33].

One method of calculation of the effective characteristics of inhomogeneous media is based on the theory of
self-consistent fields initially developed in quantum mechanics and related to the analysis of multifrequency interac-
tions. The principle of self-consistency implies that in calculating the field inside the inclusion it is considered to be
surrounded by an "effective" medium, i.e., a medium whose conductivity is identical to the sought effective conductiv-
ity. By averaging the field calculated in such a manner over all the inclusions and setting it equal to the prescribed
macroscopic field, we obtain the equation for finding the effective conductivity. It is probable that the first self-con-
sistent parameters were computed by D. A. G. Bruggeman [34]. Consideration of the problem on finding the self-con-
sistent field in a complete formulation is associated with the use of the perturbation theory, i.e., the basic tool of
modern theoretical physics. Upon selection of the corresponding "unperturbed" problem, the solution is written in the
form of a series in a certain parameter, i.e., a perturbation interpreted rather broadly at present. The main difficulty
involves summation of the series obtained, which is impossible to carry out completely as a rule. Therefore, one has
to confine oneself to one approximation or another; this gives rise to numerous formulas to calculate the effective pa-
rameters. Attempts at summing up the entire series of the perturbation theory or at least accelerating its convergence
are associated with the renormalization technique. Analogous results can be obtained without writing the series of per-
turbations if the singular and formal derivatives of the Green function in the basic functional equation are separated.
These methods are similar to the methods of approximate summation of a perturbation series written for the Fourier
amplitudes of fluctuating fields and of summation using the diagram technique of Feynman. One can study the self-
consistent method in [17, 35, 36] in sufficient detail.

The development of the methods of percolation theory made it possible to solve numerically a number of
problems of determination of the effective conductivity of inhomogeneous plane and spatial lattice structures by the
Monte Carlo method. The results are given in [17, 37, 38] and are in good agreement with self-consistent solutions.

The specific interests of percolation theory are associated with the behavior of inhomogeneous systems in the
vicinity of the point of semiconductor–insulator transition and with study of the topology of conducting and noncon-
ducting regions i.e., infinite clusters. In particular, the behavior of generalized conductivity (dielectric permittivity and
magnetic permeability, viscosity, electrical conductivity, thermal conductivity, coefficients of diffusion and filtration,
elastic moduli) near the threshold in such systems are described by scaling-type power laws [39–43].

The problem of computation of the effective characteristics of inhomogeneous media also allows a variational
formulation which enables one to pose problem on limits within which the effective characteristics of a certain class
of systems are confined, in other words, to construct the range for the exact value of the effective characteristic. It is
clear that the range will be the narrower the more information on the system in question, more precisely, on the class
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of systems to which it belongs. Thus, if the class of the media in question is not limited, i.e., no additional informa-
tion is used, the variational limits yield a universal range: the effective conductivity of any medium is confined be-
tween the harmonic mean and arithmetic mean conductivities. It is probable that this range was established for the first
time in [44], for the moduli of elasticity and compliance in [45, 46], and for conductivity in [47] by A. M. Dykhne.
Of great interest is the Haschin–Strikman range [48] for the effective conductivity of macro- and microscopically iso-
tropic multiphase systems. This range is much narrower than the universal one. Furthermore, according to [49], the
Haschin–Strikman range is appropriate for two-dimensional systems and plane two-phase isotropic systems exist whose
conductivity coincides with the limits of the range. Having the ranges at one’s disposal, one can construct approximate
solutions.

In this article, it is impossible to comment in detail on the remaining classes of works on determination of
the effective generalized conductivity of heterogeneous systems. Therefore, we confine ourselves to just make reference
to them. First of all, these are the detailed works of G. N. Dul’nev and co-workers on structures with interpenetrating
components and on percolation theory [50–59], the classical work of V. I. Odelevskii on the conductivity of matrix
systems [60], and the mathematical investigations of effective conductivity of A. M. Dykhne [61], Yu. A. Buevich
[62–64], and M. I. Shvidler [65, 66].

In engineering thermal physics, the entire class is occupied by the methods of structural modeling, the begin-
ning and development of which is associated with the monograph of A. F. Chudnovskii [67]. The actual porous struc-
ture is modeled by the most appropriate ordered structure in which one singles out either a unit cell or a period for
which the thermal conductivity is calculated [28, 51, 52, 67, 68].

Information on semiempirical and empirical (most reliable) methods of determination of the effective conduc-
tivity can be obtained from the proceedings of the All-Union seminar [69].

Thus, a wide choice of calculation-theoretical and experimental dependences to determine the coefficients of
generalized conductivity of inhomogeneous porous media exists.

A few words about fractal theory. This mathematical theory has successfully been developed in recent times,
mainly in physical applications [70–83]. As has been indicated above, the distinctive features of the behavior of the
processes occurring in porous media are attributed to percolation effects but, as is well known (see, for example, [41]),
a percolation cluster has fractal properties. There can be the cases where the fractal is the pore space, the solid skele-
ton, or the interior surface of a porous system. In this connection, a number of interesting works have appeared where
fractal theory is used to describe the structure of porous media [84–86], heat conduction [85, 88], filtration [86, 87,
89], and heat exchange [66, 87]. But we have another important aspect which possibly relates fractal theory to the pre-
sented theory of dispersion turbulence. As will be shown, the theory of dispersion turbulence is a closed statistical-
phenomenological theory of transport in inhomogeneous porous media which requires no heuristic considerations
associated with energy transitions of different scales for its construction (this property is a distinguishing feature of the
very interesting empirical model of V. V. Kharitonov which relates the hydraulic resistance and the coefficient of in-
ternal heat transfer of a porous medium [90–93]). In the theory of dispersion turbulence, the large-scale steady-state
fluctuations of the temperature and velocity fields which are attributed to the inhomogeneity of a porous structure are
of prime importance in heat exchange and hydrodynamics. This raises the question: "Is there a transfer of energy from
the small-scale pulsations in the pores to the large-scale pulsations of dispersion turbulence?" This transfer of energy
in ordinary two-dimensional turbulence is well known; it is called the inverse cascade, whose very existence is attrib-
uted to the fractal character of turbulence [94–100]. It is obvious that the existence of an inverse cascade in inhomo-
geneous porous media is no more than a hypothesis necessitating a thorough analysis and investigation in the regimes
of developed turbulent flow.

In this work, we do not comment on the results of experimental investigations of heat and mass exchange in
porous media: this necessitates separate consideration. Here we only mention the monograph [101], the experimental
data of which provide a basis for many theoretical works.

The basic regularities of the theory of dispersion turbulence were established by the author nearly a decade
ago with the example of solution of the heat-exchange problem of porous cooling. The procedure was developed [10],
a setup was created [105], and the results of experimental investigation of the internal heat exchange and hydrodynam-
ics in substantially inhomogeneous powder sintered porous specimens of stainless steel [102] were obtained earlier and
independently at the Moscow Aviation Institute. The comparison of the experimental data to the conclusions of a theo-
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retical analysis confirmed the correctness of the solution [111–115]. But the theory was presented in distorted form,
since the quantities used in processing the experimental data, i.e., d

_
pore, average diameter of the pores, d

_
part, average

diameter of the particles, and the inhomogeneity number σ
__

 [106, 108–110], are conventional and nonrigorously de-
fined. They are not used in the theory of dispersion turbulence. We were forced to change the theory and to make it
cumbersome [113] in order to pass from these quantities to a dispersion diameter dD, i.e., the linear dimension which
is simultaneously the internal scale and the parameter characterizing the inhomogeneity of the medium [116, 117]. This
parameter is determined and preserves its significance for systems with interpenetrating components, infinite clusters,
and fractal formations for which d

_
pore, d

_
part, and σ

__
 lose their meaning. The dispersion diameter is easily changed. The

porous specimens were transferred to the I. P. Bardin Central Scientific-Research Institute of Ferrous Metallurgy and
were structurally tested on a Kvantimet-720 TV microscope. The hypothesis of normal distribution (basic structural
theorem [116, 117]) was confirmed from the histogram of porosity distribution at a significance level of 0.05 accord-
ing to the Pearson criterion. The average porosity Π

__
, the dispersion D[Π], and the dispersion diameter dD were deter-

mined for each specimen. These quantities are simpler in determination than d
_

pore, d
_

part, and σ
__

. The correct structural
analysis, the extension of the theory to hydrodynamics, and the high accuracy of the confirming experiments (the error
was 15% for the internal heat exchange and 5% for the hydraulic resistance [108]) make the theory of dispersion tur-
bulence sufficiently reliable. Moreover, in other well-known works on investigation of heat and mass exchange, there
are experimental data which also confirm the theory.

The theory will be presented without excessive mathematical formalism but correctly and in a form convenient
for thermophysical engineering experimenters. The results of the theory of dispersion turbulence can successfully be
used to solve practical problems, for example, of thermal protection [118, 119], and as the additional model of internal
heat exchange for the classical theory of S. S. Kutateladze and A. I. Leontiev [120–125]. The theory of dispersion tur-
bulence can also be applied to calculations of reactors with chaotically arranged fuel elements [126–129] and chemical
reactors with a granular bed [32, 101].

Basic Propositions of the Theory of Dispersion Turbulence. Dispersion means the scattering and transfer of
any substance (mass, electric charges, field strength, energy, momentum, etc.) in a porous medium. This is a general
definition. In [10, 33], only the transfer of mass is meant by dispersion. The extension of the concept is associated
with the fact that the effective conductivity of heterogeneous structures, the effective thermal conductivity of the heat-
transfer agent in them, etc. are determined by scattering. Nine mechanisms of dispersion mass transfer, i.e., molecular
diffusion, migration of turbulent vortices, crookedness, self-correlation of the trajectories of liquid moles, recirculation,
effects of dead-end pores, adsorption, hydrodynamic mass transfer in a pore, and macrodispersion, are presented in
[10]. A. V. Luikov added here diffusion of slip in a pore [33]. This list can be supplemented with even more subtle
but insignificant effects. Dispersion mechanisms associated with the overall action of a large number of pores, in par-
ticular, macrodispersion, is the subject of investigation of the theory of dispersion turbulence. The nonrigorous defini-
tion of this phenomenon in [10] ("...macrodispersion is attributed to different deviations from an ideal porous medium
which cause the distortion of general streamlines") is unsatisfactory. We introduce the following definition in advance.

Dispersion turbulence means the scattering of a moving liquid on porosity inhomogeneities. The concept of
inhomogeneity in chaotic porous structures is determined by the principal theorem in [117].

T h e o r e m. In a chaotic inhomogeneous, homogeneous, and isotropic porous medium, the distribution den-
sity of the porosity for an arbitrary area S of any cross section obeys the normal law

W (Π) = 
1

√2π σ
 exp 







− 

Π − Π
__

2σ2







 ,  σ2

 = D [Π] = Π
__

 (1 − Π
__

) 
SD

S
 , (1)

where SD = dD
2 , dD is the dispersion diameter, the basic linear characteristic of the inhomogeneity of a homogeneous

porous structure (here it is more convenient to use this definition of a dispersion diameter whose value is √4 ⁄ π ≈ 1.1
times lower than in [116, 117]) for the square S  with side dS in the distribution (1) σ2 = D[Π] = Π

__
(1 − Π

__
)/dS

2. The
analogous normal law holds true for the porosity distribution over the volume.

It is probable that the normal law of distribution of the porosity over the volume was mentioned for the first
time in the work of Collins [130]. The mathematical constructions given in the monograph are not a proof since they
are incorrect. But the final result is correct. Moreover, Collins gave experimental data which indicate the strong de-
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pendence of the permeability of sandstone on the structure parameter determining the dispersion of the porosity distri-
bution, i.e., "the characteristic volume ε0." It is clear that this volume is proportional to the third power of the disper-
sion parameter dD, i.e., the dependence of the permeability on the linear characteristic of the inhomogeneity is even
more pronounced.

Dispersion turbulence is a steady-state phenomenon or a quasi-steady-state one if the dependence of the ther-
mophysical parameters of the liquid and the skeleton on the temperatures in unsteady regimes of heating or cooling is
taken into account. The term "dispersion turbulence" has been introduced by the author following Taylor, who noted
that "... the motion of a liquid in a porous medium is frozen turbulence" [3]. Apart from this name we will use the
equivalent one (the same as in [10]): macrodispersion. For a correct mathematical determination of dispersion turbu-
lence (macrodispersion) and its properties, it is proposed that the following three basic principles be observed.

1. Principle of quasi-one-dimensionality. For the average rate of filtration v along the Z axis, the velocity of

the liquid for the area S = ∆x∆y (Fig. 1) is the random quantity vz(S) = v 
Π(S)

Π
__  with the normal law of distribution

W (vz) = 
1

√2π σz

 exp 






− 

(vz − v)2

2σz
2







 , (2)

where σz
2 = D[vz(S)] = 

1 − Π
__

Π
__  





vdD

∆L




2

, ∆L = ∆x = ∆y = ∆z.

Having introduced the spatial pulsations vz(S) = v
_

z + vz
′  = v + vz

′ , vx(S) = vx
′ , vy(S) = vy

′ , and v
_

x = v
_

y = 0, we
obtain the normal law of distribution for vz

′ :

W (vz
′ ) = 

1

√2π vN
 exp 







− 

1

2
 







vz
′

vN








 2





 . (3)

For the component of the root-mean-square velocity of dispersion turbulence which is in parallel to the main flow, we
have

vN = √1 − Π
__

Π
__  

vdD

∆L
 .

(3a)

The principle of quasi-one-dimensionality has a clear meaning. First, the well-known hypothesis of Dupuit and
Forchheimer is used for the liquid velocity in a pore space; second, the porosity distribution over the cross section is
determined by the normal law according to the principal structural theorem. Therefore, by virtue of the ergodicity of
the average values of the porosity, the average values of the velocities over the ensemble and the area will also be
equal.

2. Independence principle. Apart from the average rate of filtration v, use is often made of the average spe-
cific mass flow rate m

.
 = ρv and the average flow rate over the area M

.
 = m

.
S = ρvS. By analogy with these constant

parameters we consider the random quantities m
.

α(S) = ρvα(S) and M
.

α = m
.

αS = ρvαS, where α determines the direc-
tions of the components along the axes α = {x, y, z}. Let there be the independence of the flow rates for parallel
cross sections in any direction, i.e., cov {vα(S), vα+∆L(S)} = cov {m

.
α(S), m

.
α+∆L(S)} = cov {M

.
α(S), M

.
α+∆L(S)} = 0 for

all ∆L ≥ R. This principle has a simple explanation. Dispersion turbulence (macrodispersion) manifests itself in vol-
umes with linear dimensions exceeding the correlation radius. For example, for chaotic spherical packings the maxi-
mum correlation radius is only 4 to 5 diameters of the particles [131]. Furthermore, a scale at least one order of
magnitude larger than the size of the particles or the pores is required for correct averaging [33]. On the one hand,
the independence principle simplifies an analysis of dispersion turbulence (all two-point, second-rank correlation tensors
are identically equal to zero), and on the other, complicates it because of the impossibility of the limiting transition
for ∆L → 0.
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3. Principle of isotropy. If in a chaotic, homogeneous, and isotropic porous medium there is a uniform flow
of a liquid (direction of the flow is constant), the random velocity fields of dispersion turbulence will be invariant
relative to the rotations about the direction of the average velocity and mirror reflections relative to the planes which
are perpendicular to the velocity vector. Therefore, all single-point tensors linearly related to the velocity field and re-
duced to the principal axes have a diagonal form (of diffusion, thermal conductivity, etc.). The principle of isotropy
for porous structures was introduced by V. N. Nikolaevskii in 1959 [8].

To define the distribution functions vx
′ (S) and vy

′ (S) we use the continuity equation for the cube ∆x = ∆y =
∆z = ∆L in a porous medium (Fig. 1). We introduce the notation ∆M

.
z = M

.
z+∆l – M

.
z, ∆M

.
x = M

.
x+∆L – M

.
x = ∆M

.
x
 ′

(M
.

x = M
.

x
 ′,  M

.
x+∆L = M

.
x+∆L
 ′ ), ∆M

.
y = M

.
y+∆L – M

.
y = ∆M

.
y
 ′ (M

.
y = M

.
y
 ′,  M

.
y+∆L = M

.
y+∆L
 ′ ).

Then the continuity equation will be obtained in the form

∆M
.

z + ∆M
.

x
′
 + ∆M

.
y
′
 = 0 .

Using the principle of isotropy ∆M
.

x
 ′  = ∆M

.
y
 ′ we find

∆M
.

z = − 2∆M
.

x
′
 = − 2∆M

.
y
′
 .

The random quantities ∆M
.

x
 ′,  ∆M

.
y
 ′,  M

.
x
 ′(S), M

.
y
 ′(S), vx

′ (S), and vy
′ (S) have the normal laws of distribution, since vz(S), M

.
z(S),

and ∆M
.

z have such a distribution according to the principle of quasi-one-dimensionality. Having taken the square of
the last equalities and averaging with the use of the independence principle, we obtain

D [M
.

z (S)] = 4D [M
.

x
′
 (S)] = 4D [M

.
y
′
 (S)]

or for the velocities

D [vz (S)] = D [vz
′  (S)] = 4D [vx

′  (S)] = 4D [vy
′  (S)] .

Then for the component vx
′ (S) with account for (3a) the distribution

W (vx
′ ) = 

1

√2π vM
 exp 







− 

1

2
 







vx
′

vM








 2





 ,   vM = 

1

2
 √1 − Π

__

Π
__  

vdD

∆L
 . (4)

holds true. We have the analogous distribution for the component vy
′ (S):

W (vy
′ ) = 

1

√2π vM
 exp 







− 

1

2
 







vy
′

vM








 2





 ,   vM = 

1

2
 √1 − Π

__

Π
__  

vdD

∆L
 . (5)

The ratio of the longitudinal component of the root-mean-square velocity of dispersion turbulence to the transverse
component is vN/vM = 2, which corresponds to the estimates obtained by M. A. Gol’dshtik from other considerations
[32].

Distributions (3)–(5) determine the random field of velocities of dispersion turbulence. Now we can give a
more rigorous definition of dispersion turbulence. Dispersion turbulence (macrodispersion) means the steady-state cha-
otic motion of a liquid in a porous medium attributed to the scattering of the main flow on porosity inhomogeneities
with the random Gaussian velocity field (3)–(5).

We calculate the Reynolds numbers of dispersion turbulence for regions in the porous medium with an arbi-
trary characteristic linear dimension dS (circle S = πdS

2, square S = dS
2); by using (3a) and (4), for ∆L = dS we obtain

ReN = 
vNdS

ν
 = √1 − Π

__

Π
__  

vdD

ν
 ,   ReM = 

vMdS

ν
 = 

1

2
 √1 − Π

__

Π
__  

vdD

ν
 .
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Thus, the Reynolds number does not depend on the linear dimension of the region; dD is the characteristic
scale of dispersion turbulence. Moreover, for example, for spherical packings √ (1 − Π

__
 ⁄ Π
__

 ≈ 1.2 and dD ≈ deq [116,
117]; therefore, the Reynolds number usually used to describe hydrodynamics and heat exchange is Reeq = vdeq/v ≈
ReII. Needless to say, this fact is not a proof of the dispersion turbulence determining the processes of heat and mass
exchange in porous media, but it is remarkable.

Local Laws of Transfer. Dispersion turbulence is the chaotic motion of flows of a liquid. Consequently, laws
analogous to the laws of Fourier, Newton, and Fick with the corresponding coefficients of thermal conductivity, vis-
cosity, and diffusion must hold true for dispersion turbulence [33, 132, 133]. These coefficients are easy to determine.
As previously, the geometric object of investigation is the cube ∆x = ∆y = ∆z = ∆L which is arbitrary singled out in
a porous medium (Fig. 1); the Z axis is in parallel to v.

1. Macrodispersion diffusion (self-diffusion). Let us assume initially that in the lower half of the cube the con-
centration of a substance introduced into the main flow is cx, while in the upper half the concentration is cx+∆L. For
definiteness we take cx > cx+∆L. Then the transfer of the substance from the bottom upward through the area S =
(∆L)2 of the central cross section of the cube which is perpendicular to the X axis is determined by the average dis-
persion flow Mx,c = cxvM(∆L)2Π

__
 and the transfer from the top downward is determined by the flow M

.
x+∆L,c =

cx+∆LvM(∆L)2Π
__

. The resultant diffusion flow is equal to

∆M
.

x,c = M
.

x,c − M
.

x+∆L,c = − 
1

2
 √ Π

__
 (1 − Π

__
)  vdD 

∆c∆L

∆L
 (∆L)2 , (6)

where ∆c∆L = cx+∆L – cx.
The concentration cannot change abruptly, but the initial assumption can easily be abandoned if we note that

Eq. (6) preserves its form for all the cubes ∆L ≥ ∆L1 ≥ ∆L2 ≥ ... ≥ 0 embedded into one another in the case of pres-
ervation of the ratios

∆c∆L

∆L
 = 

∆c∆L1

∆L1
 = 

∆c∆L2

∆L2
 = ... = 

dcx

dx
 . (7)

Formally, equalities (7) are extended to the case ∆L → 0 for the most natural and simple introduction of a derivative.
But the dispersion turbulence is determined for volumes with linear dimensions ∆L ≥ R. This difficulty is surmount-
able: the derivative dcx/dx can be determined on the basis of the principle of compressive stresses without a limiting
transition for ∆L → 0 [134]. Therefore, from (6) and (7) we obtain

∆M
.

x,c = − 
1

2
 √ Π

__
 (1 − Π

__
)  vdD 

dcx

dx
 S . (8)

Equation (8) is the first Fick law with the diffusion coefficient DM,x:

DM,x = 
1

2
 √ Π

__
 (1 − Π

__
)  vdD . (8a)

The Fick law is analogously proved for the remaining components of the coefficient of dispersion diffusion:

DM,y = DM,x = DM,M = 
1

2
 √Π

__
 (1 − Π

__
)  vdD ,   DM,z = DM,N = √ Π

__
 (1 − Π

__
)  vdD . (9)

If the X axis is brought into coincidence with the direction of the main flow, the Nikolaevskii tensor [8] for the dis-
persion diffusion has the form

DM = √ Π
__

 (1 − Π
__

)  vdD 














1

0

0

   

0

1
2

0

   

0

0

1
2














 . (10)
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In the absence of filtration in the porous medium we will have molecular diffusion whose coefficient Deff,0 can be cal-
culated from the formulas of generalized conductivity, as has been indicated above (for example, from the Maxwell
formula Deff,0 = Dm2Π

__
/(3 – Π

__
) [33]). The total effective coefficients of diffusion are determined by the additivity

DN = Deff,0 + √ Π
__

 (1 − Π
__

)  vdD ,   DM = Deff,0 + 
1
2

 √ Π
__

 (1 − Π
__

)  vdD . (11)

2. Macrodispersion thermal conductivity. Let the liquid in the lower half of the cube have a higher tempera-
ture Tx > Tx+∆L. There is no heat conduction over the solid skeleton. Then the resultant average dispersion heat flux
from the bottom upward through the central area S = (∆L)2 is equal to

Qx = − cp ρvM ∆Tx (∆L)2
 Π
__

 = − 
1

2
 √ Π

__
 (1 − Π

__
)  cp ρvdD 

∆Tx

∆L
 (∆L)2 , (12)

where ∆Tx = Tx+∆L – Tx.
Using considerations analogous to the ones above, from (12) we obtain the Fourier law

Qx = − 
1

2
 √ Π

__
 (1 − Π

__
)  cp ρvdD 

dTx

dx
 S . (12a)

The Fourier law will also hold true for the remaining axes with the components of the coefficient of dispersion ther-
mal conductivity

λM,x = λM,y = λM,M = 
1
2

 √ Π
__

 (1 − Π
__

)  cp ρvdD , (13)

λM,z = λM,N = √ Π
__

 (1 − Π
__

)  cp ρvdD . (14)

With allowance for the influence of the molecular thermal conductivity of the liquid, the components will have the
form

Fig. 1. Determination of the velocity field of dispersion turbulence. M
.

z, M
.

z+∆z,
M
.

x
 ′,  M

.
x+∆x, M

.
y
 ′,  and M

.
y+∆y
 ′ ,  kg/sec; ∆x, ∆y, ∆z, m.

Fig. 2. Computation of the coefficient of dispersion viscosity. ∆L, m; S, m2; v,
m/sec; du/dx, sec−1.
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λN = λeff,0 + √ Π
__

 (1 − Π
__

)  cp ρvdD ,   λM = λeff,0 + 
1
2

 √ Π
__

 (1 − Π
__

)  cp ρvdD . (15)

3. Macrodispersion viscosity. We compute the coefficients of apparent viscosity by another method, formally
using the Newton law for dispersion flows. Just as for the diffusion and thermal conductivity, we calculate the com-
ponents of the viscosity coefficient ηx and ηy for the velocity gradients which are perpendicular to the main flow and
ηz for the velocity gradients which are parallel to it.

We consider the central cross section of the cube S = (∆L)2 and superimpose a laminar field of velocities
with a gradient along the X axis on a constant main flow (Fig. 2). According to the Newton law, since v = const the

force of internal friction is F = ηM,xS
du
dx

; on the other hand, the source is equal to the change in the momentum per

unit time. Therefore,

ηM,x = 
∆K

∆tS 
du
dx

 .

It is easy to calculate the total average change in the momentum (Fig. 2):

∆K = ρvM ∆tS 
du
dx

 ∆L Π
__

 ,

therefore, ηM,x = ρvM∆L = 
1
2
√Π
__

(1 − Π
__

)ρvdD. It is clear that

ηM,y = ηM,x = ηM,M = 
1
2

 √ Π
__

 (1 − Π
__

)  ρvdD . (16)

Analogously we calculate the coefficient ηz for the longitudinal velocity gradients:

ηM,z = ηM,N = √ Π
__

 (1 − Π
__

)  ρvdD . (17)

To determine the local coefficients of transfer of macrodispersion we used physically clear methods of analy-
sis of transport phenomena in gases, but formulas (9), (10), (13), (14), (16), and (17) can be derived strictly directly
from the random field of velocities (3)–(5). It is more convenient to carry out further refinement and analysis of for-
mulas (11) and (15) in deriving the basic equation of internal heat exchange in inhomogeneous porous media.

The deviation of the local laws of transfer will be completed by equalities which relate the coefficients of
transfer of dispersion turbulence:

cpηM,N

λM,N
 = 

cpηM,M

λM,M
 = PrM = 1 , (18)

ηM,N = ρDM,N ,   ηM,M = ρDM,M . (19)

When Π
__

 = 0.5 all the macrodispersion coefficients of transfer for homogeneous media with nonuniform prop-
erties 0 ≤ Π < 1 take on the maximum values. The entropy of the structure for such a porosity also has its extremum
[117].

Dispersion turbulence is attributed to the nonuniformity of porosity distribution in space as a result of which
the total effective action of microprocesses will be different for individual objects consisting of a great number of
pores. These differences lead to the occurrence of a macrodispersion continuum. Dispersion turbulence is a macroscale
random process that forms stable and steady-state space structures: the fields of temperatures, velocities, and concen-
trations [111–115, 127–129].
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Macrodispersion effects manifest themselves when the heat- and mass-transfer processes in the system solid
skeleton–liquid reach the steady-state regime throughout the space of a porous medium.

The steady-state dispersion turbulence, acting between macrovolumes, exerts a substantial influence on the av-
erage parameters of the processes of heat and mass exchange which must be determined with allowance for the regu-
larities presented in this work.

NOTATION

Dm, coefficient of molecular diffusion of the liquid; ρ, density of the liquid; v, coefficient of kinematic vis-
cosity of the liquids; λeff,0 and Deff,0, effective coefficients of thermal conductivity and diffusion of the stationary liq-
uid in a porous medium; dpore and dpart, average diameters of the pores and the particles; σ

__
, inhomogeneity parameter

in [110]; dD and SD, dispersion diameter and area; S, arbitrary area; σ, standard deviation; ε0, characteristic volume in
[130]; v, velocity of the liquid in a porous medium; Π, porosity; dS, ∆x, ∆y, ∆z, ∆L, ∆L1, and ∆L2, linear dimensions;
m
.
 and M

.
, specific and total flow rate of the liquid; R, correlation radius of the porous structure; deq, equivalent di-

ameter; cx and cx+∆L, concentrations; ∆c∆L, ∆c∆L1
, and ∆c∆L2

, concentration difference; M
.

x,c, M
.

x+∆L,c, and ∆Mx,c diffu-
sion flows; D, λ, and η, coefficients of dispersion diffusion, thermal conductivity, and viscosity; T and ∆T, temperature
and its difference; cp, specific heat at constant pressure; Qx, heat flux; u, velocity of the gradient flow of the liquid;
F, force; ∆K, change in the momentum; ∆t, time; Reeq, ReM, ReN, and ReN,1, Reynolds numbers; PrM, dispersion
Prandtl number; a

_
, value of the random quantity averaged over the ensemble; D[a], dispersion of the quantity a; W(a),

probability density of the quantity a. Subscripts and superscripts: prime, relates to the quantities (pulsating in space)
with a zero average value; x, y, z, x + ∆L, y + ∆L, z + ∆L, x + ∆x, y + ∆y, and z + ∆z, relate to the components
along the coordinate axes; α and α + ∆α, relate to the components along the arbitrary axis; M, relates to the compo-
nents perpendicular to the main flow; N, relates to the components in parallel to the main flow; M, relates to the quan-
tities determined by macrodispersion; S, relates to the area; c, relates to the quantities determined by the concentration
of the diffusing liquid; eq, equivalent; m, molecular; pore, pores; part, particle; p, isobaric; eff, effective.
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